-
8Grade 8 Standards
Top Mathematicians
-
The Number System
-
8.NS.A.1
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
-
8.NS.A.2
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
-
8.NS.A.1
-
Statistics & Probability
-
8.SP.A.1
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
-
-
8.51Scatter Plots5
-
-
8.SP.A.2
Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
-
-
8.SP.A.3
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
-
-
8.108Graph a Line from an Equation10
-
8.41Find the Slope of a Graph10
-
8.113Graph a Line from an Equation Using Algebra10
-
8.69Algebra: Linear Function10
-
8.112Algebra: Linear Function with Intercepts10
-
-
8.SP.A.4
Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
-
-
8.89Interpret Stem and Leaf Plots10
-
8.87Interpret Histograms5
-
8.86Create Histograms5
-
8.88Create Frequency Charts5
-
-
8.SP.A.1
-
Functions
-
8.F.A.1
Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
-
-
8.66Complete a Function Table10
-
8.52Find Points on a Function Graph5
-
-
8.F.A.2
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
-
-
8.108Graph a Line from an Equation10
-
8.113Graph a Line from an Equation Using Algebra10
-
8.107Graph a Line from a Function Table10
-
8.68Write a Rule for a Function Table10
-
8.92Identify Linear and Nonlinear Functions5
-
8.64Rate of Change10
-
-
8.F.A.3
Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.
-
8.F.B.4
Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
-
-
8.39Find the Constant of Variation Graphs5
-
8.25Proportional Relationships15
-
8.31Find the Proportional Relationship15
-
8.41Find the Slope of a Graph10
-
8.32Find Slope from Two Points15
-
8.68Write a Rule for a Function Table10
-
8.74Find the Constant of Variation15
-
8.69Algebra: Linear Function10
-
8.109Find the Constant of Variation with Tables15
-
8.112Algebra: Linear Function with Intercepts10
-
-
8.F.B.5
Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
-
-
8.69Algebra: Linear Function10
-
8.112Algebra: Linear Function with Intercepts10
-
-
8.F.A.1
-
Expressions & Equations
-
8.EE.A.1
Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 32 × 3–5 = 3–3 = 1/33 = 1/27.
-
-
8.15Understanding Exponents10
-
8.11Evaluate Exponents10
-
8.12Exponents: Solve for the Variable10
-
8.16Exponents with Negative Bases10
-
8.13Exponents with Decimal and Fractional Bases15
-
8.1Understanding Negative Exponents5
-
8.14Evaluate Negative Exponents10
-
8.94Multiplication with Exponents10
-
8.95Division with Exponents10
-
8.96Multiplication and Division with Exponents10
-
8.98Power Rule5
-
8.100Simplify Expressions Involving Exponents5
-
8.103Powers of Monomials10
-
8.104Divide Monomials5
-
8.105Multiply and Divide Monomials10
-
8.97Powers of Monomials5
-
-
8.EE.A.2
Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational.
-
8.EE.A.3
Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 times 108 and the population of the world as 7 times 109, and determine that the world population is more than 20 times larger.
-
8.EE.A.4
Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology
-
8.EE.B.5
Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
-
-
8.20Ratios and Proportions10
-
8.19Ratios and Proportions10
-
8.27Solving Proportions10
-
8.29Solving Proportions10
-
8.39Find the Constant of Variation Graphs5
-
8.106Graph a Proportional Relationship5
-
8.25Proportional Relationships15
-
-
8.EE.B.6
Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.
-
-
8.31Find the Proportional Relationship15
-
8.108Graph a Line from an Equation10
-
8.41Find the Slope of a Graph10
-
8.32Find Slope from Two Points15
-
8.42Find Slope from an Equation10
-
8.101Graph a Line Using Slope10
-
8.113Graph a Line from an Equation Using Algebra10
-
-
8.EE.C.7a
Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers).
-
8.EE.C.7b
Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
-
-
8.35Solve Two-Step Linear Equations5
-
8.44Solve Equations Involving Squares and Square Roots10
-
8.40Solve Multi Step Equations5
-
8.38Solve Equations Involving Like Terms10
-
8.37Properties of Addition and Multiplication15
-
8.36Distributive Property5
-
8.34Simplify Variable Expressions Using Properties10
-
-
8.EE.C.8a
Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
-
8.EE.C.8b
Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6.
-
-
8.53Find the Number of Solutions to a System of Equations5
-
8.93Classify a System of Equations by Graphing10
-
8.55Classify a System of Equations5
-
8.67Solve a System of Equations Using Substitution5
-
8.54Solve a System of Equations Using Elimination5
-
8.107Graph a Line from a Function Table10
-
8.56Solve a System of Equations Using Elimination15
-
-
8.EE.C.8c
Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
-
8.EE.A.1
-
Geometry
-
8.G.A.1a
Lines are taken to lines, and line segments to line segments of the same length.
-
8.G.A.1b
Angles are taken to angles of the same measure.
-
-
8.17Identify Reflections, Rotations and Translations5
-
8.72Translations: Graph the Image5
-
8.73Reflections: Graph the Image5
-
8.70Rotations: Graph the Image10
-
8.110Circle Graphs and Central Angles5
-
-
8.G.A.1c
Parallel lines are taken to parallel lines.
-
8.G.A.2
Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
-
8.G.A.3
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
-
-
8.78Translations Find the Coordinates10
-
8.80Reflections Find the Coordinates10
-
8.81Rotations Find the Coordinates10
-
8.83Dilations Graph the Image5
-
8.45Dilations: Find the Coordinates5
-
-
8.G.A.4
Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.
-
-
8.75Similar and Congruent Figures5
-
8.82Similar Figures Side Lengths and Angle Measures5
-
8.79Similar Solids5
-
-
8.G.A.5
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
-
8.G.B.6
Explain a proof of the Pythagorean Theorem and its converse.
-
8.G.B.7
Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
-
8.G.B.8
Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
-
8.G.C.9
Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
-
-
8.48Volume of Prisms and Cylinders5
-
8.49Volume of Pyramids and Cones5
-
8.50Volume and Surface Area of Spheres5
-
-
8.G.A.1a